Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Luminescence ; 39(3): e4705, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445417

RESUMO

In this work, we present the synthesis of a green-emitting series of BaGd2 ZnO5 :xHo3+ (0.5-3 mol%) phosphors using a high-temperature solid-state reaction method. Phase purity and crystal structure information were evaluated through X-ray powder diffraction patterns. Optical properties were examined through diffuse reflectance spectra, revealing that the prepared phosphor exhibited a band gap of 4.65 eV. The effect of Ho3+ doping on the morphology and ion distribution on the surface was assessed using scanning electron microscopy and time-of-flight secondary ion mass spectrometry techniques, respectively. The excitation spectra of the synthesized phosphor exhibited a charge transfer band and strong absorption transitions. The emission spectra displayed typical holmium emission characteristics, featuring a strong green emission band associated with f-f transitions from 5 F4 + 2 S2 → 5 I8 . Decay dynamics of the synthesized phosphor exhibited a single-exponential decay pattern, with lifetimes ranging from 0.103 to 0.053 ms. The intrinsic radiative lifetime, calculated through Auzel's fitting was determined to be 0.14 ms. Using the emission spectra, colorimetric behaviour was analyzed, revealing that the Commission Internationale de l'éclairage (CIE) coordinates exclusively lay within the green region at (0.285, 0.705), with an impressive colour purity of 99.6%. Given these marked properties, the synthesized phosphor exhibits great potential for a wide range of green-emitting applications, including displays, white light-emitting diodes, and security signage.


Assuntos
Substâncias Luminescentes , Óxido de Zinco , Colorimetria , Iluminação , Microscopia Eletrônica de Varredura
2.
RSC Adv ; 13(20): 13423-13437, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37152566

RESUMO

Here, we report a series of white-emitting Ba(La2-x Dy x )ZnO5 (x = 0-7 mol%) phosphors synthesized via a high-temperature solid-state reaction. The synthesized phosphor's phase purity and tetragonal crystal structure were confirmed by an X-ray powder diffraction (XRPD) pattern. The wide bandgap characteristic feature was assessed through reflectance spectra, and the estimated bandgap was found to be 4.70 eV. Besides analyzing the effect of doping on the surface morphology, the distribution of ions on the surface was observed through the secondary ion mass spectroscopy technique. The synthesized phosphor was found to display bluish (486 nm) and yellowish (576 nm) bands in the emission spectra under the excitation of 325 nm and 352 nm, which together are responsible for producing the white luminescence. The analysis of Judd-Ofelt parameters indicates the symmetric nature of Dy3+ substitution in the present host. The thermal stability of the phosphor was assessed by varying the temperature up to 403 K, and it was found that the synthesized phosphor possesses improved thermal stability with an activation energy of 0.29 eV. The photometric evaluations of the present phosphor revealed the CIE coordinates around the near-white regime (0.3448, 0.3836), along with the color-correlated temperature value of 5102 K. All research on this luminescent material's unique features points to the possibility of using it to fabricate white-light-emitting devices for solid-state lighting applications.

3.
Mater Today Bio ; 23: 100860, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38179230

RESUMO

The extraordinary and unique properties of persistent luminescent (PerLum) nanostructures like storage of charge carriers, extended afterglow, and some other fascinating characteristics like no need for in-situ excitation, and rechargeable luminescence make such materials a primary candidate in the fields of bio-imaging and therapeutics. Apart from this, due to their extraordinary properties they have also found their place in the fields of anti-counterfeiting, latent fingerprinting (LPF), luminescent markings, photocatalysis, solid-state lighting devices, glow-in-dark toys, etc. Over the past few years, persistent luminescent nanoparticles (PLNPs) have been extensively used for targeted drug delivery, bio-imaging guided photodynamic and photo-thermal therapy, biosensing for cancer detection and subsequent treatment, latent fingerprinting, and anti-counterfeiting owing to their enhanced charge storage ability, in-vitro excitation, increased duration of time between excitation and emission, low tissue absorption, high signal-to-noise ratio, etc. In this review, we have focused on most of the key aspects related to PLNPs, including the different mechanisms leading to such phenomena, key fabrication techniques, properties of hosts and different activators, emission, and excitation characteristics, and important properties of trap states. This review article focuses on recent advances in cancer theranostics with the help of PLNPs. Recent advances in using PLNPs for anti-counterfeiting and latent fingerprinting are also discussed in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...